Etude du Tellurite Mixte de Sodium et de Potassium à Trois Molécules d'Eau: NaKTeO₃.3H₂O

PAR FRANÇOISE DANIEL, JACQUES MORET, MAURICE MAURIN ET ETIENNE PHILIPPOT

Laboratoire de Chimie Minérale C, ERA 314, Chimie des Matériaux, Université des Sciences et Techniques du Languedoc, Place Eugène Bataillon, 34060 Montpellier CEDEX,

France

(Reçu le 4 février 1981, accepté le 16 septembre 1981)

Abstract

NaKTeO₃. 3H₂O is trigonal, space group P31c, with cell parameters a = b = 6.550 (3), c = 8.980 (4) Å and Z = 2. 299 independent reflexions were used in a full-matrix least-squares refinement, a final R value of 0.046 being obtained. The crystal structure of NaKTeO₃. 3H₂O is built up from electrostatic interactions and hydrogen bonds linking the discrete tellurite groups TeO₃²⁻, the Na⁺ and K⁺ ions and water molecules. This structure can be described as a three-dimensional packing of NaO₃(OH₂)₃ octahedra and KO₃(OH₂)₆ tricapped trigonal prisms. These groups share edges to form sheets perpendicular to the c axis.

Introduction

L'étude de NaKTeO₃. 3H₂O entre dans le cadre de nos travaux sur les phases les plus hydratées des tellurites effet, des études récentes alcalins. En sur K₂TeO₃.3H₂O (Johansson & Lindqvist, 1978) et Na₂TeO₃.5H₂O (Philippot, Maurin & Moret, 1979) ont montré que dans ces phases hydratées dont les structures contiennent des anions TeO_3^{2-} discrets, l'environnement de l'atome de tellure(IV) par les atomes d'oxygène est particulièrement symétrique: pyramide à base triangulaire $ETeO_3$, si on appelle E la paire non liée $5s^2$ de l'atome de tellure(IV). C'est dans ces composés où l'atome de tellure ne présente pas d'interactions faibles avec d'autres atomes d'oxygène comme c'est le cas généralement dans les tellurites anhydres (Brown, 1974; Philippot, 1981; Trömel, 1980) que la localisation précise de la paire libre semble la plus favorable.

Les tellurites de potassium et de sodium, fortement hydratés, ayant fait l'objet d'une détermination structurale, il était intéressant alors de déterminer les caractéristiques structurales d'une tellurite hydraté mixte de sodium et de potassium.

D'autre part, on peut penser que certaines propriétés des tellurites peuvent être comparables à celles des composés analogues du sélénium. Or plusieurs 0567-7408/82/030703-04\$01.00 sélénites, comme par exemple $KH_3(SeO_3)_2$ (Shuvalov, Ivanov & Sitnik, 1967) et $NaH_3(SeO_3)_2$ (Vijayan, 1968) sont des composés ferroélectriques et la détermination structurale de l'hydrogénosélénite de sodium montre clairement l'importance des liaisons hydrogène dans la phase ferroélectrique. Pour ces raisons il peut être intéressant de préparer des tellurites pour lesquels le groupement TeO₃ est bien individualisé et dont la cohésion de la structure est assurée entre autre par des liaisons hydrogène. Ces conditions nous paraissent bien remplies dans les phases qui cristallisent avec de nombreuses molécules d'eau.

Partie expérimentale

La préparation des monocristaux de NaKTeO₃. $3H_2O$ a été menée par dissolution de quantités stoechiométriques de NaOH, KOH et TeO₂ dans un minimum d'eau distillée. L'évaporation lente de cette solution, à 293 K, dans un dessiccateur contenant de la potasse conduit à la formation de monocristaux de NaKTeO₃. $3H_2O$ en forme d'aiguilles prismatiques.

La détermination des paramètres de la maille et des groupes d'espace possibles a été conduite à l'aide d'une chambre de Weissenberg. La mesure des intensités de réflexion a été effectuée à l'aide d'un monocristal de forme parallélépipédique à base losange (arête = 0,2 mm) et d'axe d'allongement c (0,6 mm). Le composé, très hygroscopique, a été placé dans un tube capillaire scellé.

Nous avons utilisé pour ces mesures un diffractomètre automatique Nonius CAD-4 (rayonnement $K\alpha$ du molybdène, monochromateur à lame de graphite) avec un balayage $\omega -\frac{2}{3}\theta$. On constate une diminution continue de l'intensité de toutes les réflexions de contrôle, mesurées toutes les heures. Ceci traduit une dégradation du cristal et nous avons appliqué un facteur d'échelle correctif, SF, en fonction du temps (SF variant de 1,00 à 1,26). 299 réflexions indépendantes, pour des valeurs de $\theta \leq 30^\circ$ et de $\sigma(I)/I \leq 0,3$ (Susa & Steinfink, 1971) ont été conservées pour la détermination et l'affinement de la structure.

© 1982 International Union of Crystallography

Du fait de la dégradation du cristal, qui se traduit aussi macroscopiquement par une légère efflorescence, nous n'avons pas effectué les corrections d'absorption $[\mu(Mo Ka) = 5,2 \text{ mm}^{-1}].$

Détermination et affinement de la structure

Une synthèse de Patterson tridimensionnelle permet de localiser les atomes lourds de tellure en position 2(a). Un premier affinement tenant compte de ces deux atomes, suivi d'une synthèse 'différence' de Fourier tridimensionnelle permet de localiser les atomes de potassium et de sodium en position 2(b) et les atomes d'oxygène en position 6(c).

Dans un affinement final nous avons tenu compte de la diffusion anomale des atomes les plus lourds, Te et K, ainsi que des vibrations anisotropes de tous les atomes. La valeur de l'indice résiduel converge vers R = 0.047. A ce stade une synthèse de Fourier différence 'tridimensionnelle' permet de localiser les deux atomes d'hydrogène indépendants. Un dernier affinement, tenant compte de la position de ces atomes d'hydrogène, converge vers une valeur de R = 0.046.

Les coordonnées atomiques résultantes et les facteurs de température isotrope correspondants sont donnés dans le Tableau 1.* Les facteurs de diffusion atomiques utilisés sont ceux calculés par Doyle & Turner (1968) pour le potassium, le sodium et l'oxygène, par Cromer & Waber (1965) pour le tellure et les International Tables for X-ray Crystallography (1962) pour l'hydrogène.

Description de la structure

La structure de NaKTeO₃.3H₂O est essentiellement constituée d'octaèdres NaO₃(OH₂)₃ et de prismes

Tableau 1. Paramètres atomiques finals et facteurs de température isotrope correspondants de NaKTeO₃.-3H₂O

$$B=8\pi^2\langle u^2\rangle.$$

	x	У	z	B (Å ²)
Te	0	0	+	0.88 (6)
K	ł	+	0,2236 (10)	1.3 (2)
Na	ł	4	0.3011 (15)	1.4 (4)
O(1)	0,0966 (16)	0,8129 (16)	0,1586 (13)	1.3 (3)
O(2)	0,0049 (13)	0,4535 (23)	0,4566 (19)	4.6 (4)
H(1)	0,43	0,10	0,50	4.0
H(2)	0,58	0,02	0,47	4,0

trigonaux tricapés $KO_3(OH_2)_6$ partageant des arêtes pour former des couches perpendiculaires à l'axe d'allongement c du cristal. La cohésion entre les couches est assurée par les liaisons hydrogène des molécules d'eau et par une face commune des environnements oxygénés des cations Na⁺ et K⁺. Cet arrangement tridimensionnel fait apparaître des tunnels de symétrie ternaire dans lesquels se localisent les atomes de tellure(IV) des anions TeO₃²⁻ (Fig. 1).

Nous avons rassemblé dans le Tableau 2 les distances et angles caractéristiques des environnements des cations sodium et potassium. De part la symétrie de la maille, les distances M-O et les angles O-M-O (M = Na, K) sont donnés par groupes de trois.

Fig. 1. Projection, dans le plan *ab* d'une demi-maille, montrant les feuillets de composition globale NaKO₉ et mettant en évidence l'existence de tunnels parallèles à l'axe *c* dans lesquels se situent les anions TeO_3^{2-} . Les surfaces en grisé représentent les faces supérieures des polyèdres NaO₆ et KO₉, perpendiculaires à l'axe *c*. Les atomes O(2), décalés d'une demi-maille sont en positions sensiblement éclipsées.

Tableau2. Distances(Å)caractéristiquesdel'environnementdesatomesdesodiumetdepotassium par les atomesd'oxygène

Na-O(2) Na-O(2 ⁱ) Na-O(2 ⁱⁱ)	2,351 (14)	Na–O(1) Na–O(1 ^h) Na–O(1 ⁱⁱ)	2,538 (12)
K-O(2 ⁱ) K-O(2 ⁱⁱⁱ) K-O(2 ^{iv})	2,857 (15)	$K = O(1^{i})$ $K = O(1^{ii})$ $K = O(1^{iv})$	3,048 (9)
K-O(2 ^v) K-O(2 ^{vi}) K-O(2 ^{vii})	3,053 (16)		

Code de symètrie: (i) 1 - y, 1 - (x - y), z; (ii) y - x, 1 - x, z; (iii) y - x, -x, z; (iv) 1 + x, y, z; (v) y, x, $-\frac{1}{2} + z$; (vi) 1 - x, y - x, $-\frac{1}{2} + z$; (vii) 1 - (x - y), 1 - y, $-\frac{1}{2} + z$.

^{*} Les listes des facteurs de structure et des facteurs d'agitation thermique anisotrope ont été déposés au dépot des archives de la British Library Lending Division (Supplementary Publication No. SUP 36399: 4 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

L'environnement octaédrique des cations sodium est constitué de trois liaisons courtes $Na-O(2)H_2 =$ 2,35 Å et de trois liaisons plus longues Na-O(1) =2,54 Å avec les atomes d'oxygène des groupements tellurites TeO₃. Pour les cations potassium les trois distances équatoriales sont $3 \times K-O(1) = 3,05$ Å tandis que les six autres, avec les atomes d'oxygène des molécules d'eau sont de 2,86 et 3,05 Å respectivement.

Chaque octaèdre NaO₆ partage trois arêtes avec trois prismes trigonaux tricapés KO₉ et réciproquement, pour former des couches de composition globale NaKO₉ (Fig. 1) parallèles au plan ab. Ces arêtes sont situées d'un même côté du prisme trigonal tricapé KO₉ par rapport au plan équatorial $3 \times O(1)$ et correspondent aux trois atomes d'oxygène O(2) les plus proches des cations potassium [K-O(2) = 2,86 Å]. La face formée par les trois autres atomes d'oxygène O(2)[K-O(2) = 3.05 Å] est alors commune à un octaedre NaO_6 et à un prisme trigonal tricapé KO_9 de deux couches parallèles et assure la cohésion entre les couches parallèlement à l'axe c (Fig. 2). Cette cohésion est renforcée par la formation de liaisons hydrogène entre les molécules d'eau O(2)H₂ d'une couche et les atomes d'oxygène O(1) des anions tellurites TeO_3^{2-} de la couche voisine. Le Tableau 3 rassemble les principales caractéristiques de ces molécules d'eau et les positions probables des liaisons hydrogène résultantes (Fig. 2).

Tableau 3. Caractéristiques des molécules d'eau et des liaisons hydrogène probables dans la phase NaKTeO₃.-3H₂O

Les positions des atomes d'hydrogène n'ont pas été affinées.

H(1 ¹)–O(2) H(2 ¹)–O(2)	0,85 Å 0,80	H(1 ⁱ)-O(2)-H(2 ⁱ)	109,0°
O(2)—O(1 ⁱⁱ) O(2)—O(1 ⁱⁱⁱ)	2,720 (18) Å 2,800 (18)		

Code de symétrie: (i) -y, x - y, z; (ii) -1 + y, x, $\frac{1}{2} + z$; (iii) -x, y - x, $\frac{1}{2} + z$.

Fig. 2. Projection, dans la direction de l'axe c, de la structure schématisée de NaKTeO₃.3H₂O, montrant l'empilement des feuillets liés par des liaisons hydrogène et par une face commune des polyèdres KO₉ et NaO₆.

Nous avons vu que l'enchaînement des octaèdres NaO₆ et des prismes trigonaux tricapés KO₉ dans les couches de composition globale NaKO₉ fait apparaître des lacunes en projection dans le plan *ab*. Ces lacunes sont conservées dans la demi-maille supérieure non représentée à la Fig. 1, car les atomes d'oxygène se correspondent en projection, par les axes de symétrie xet y. Il se forme alors dans l'arrangement tridimensionnel de la structure des tunnels parallèles à l'axe d'allongement c du cristal, dans lesquels se localisent les atomes de tellure(IV) sous forme d'anions TeO₁²⁻.

Les distances et angles caractéristiques de l'anion TeO_4^{2-} sont rassemblés dans le Tableau 4.

Bien que les valeurs des longueurs Te–O aient une précision relative due à l'instabilité du cristal utilisé pour nos mesures, on constate que la pyramide TeO₃ n'est pas déformée, avec des distances Te–O égales et des angles O–Te–O tous égaux. L'anion TeO₃^{2–} est particulièrement discret puisqu'en dehors des trois atomes d'oxygène constitutifs de la base de la pyramide, les atomes d'oxygène les plus proches sont à 3,5 Å pour ceux des molécules d'eau situées dans la même couche que l'anion TeO₃^{2–} et à près de 4 Å pour ceux des molécules d'eau situées dans les couches voisines.

La valeur angulaire O-Te-O de $101,5^{\circ}$ est bien l'indice de l'activité stéréochimique de la paire libre. Celle-ci doit être dirigée le long d'une direction parallèle à l'axe c, qui est un axe de symétrie ternaire pour la pyramide ETeO₃.

Tous ces résultats sont en bon accord avec ceux trouvés dans les autres phases tellurites les plus hydratées étudiées récemment: $K_2TeO_3.3H_2O$ (Johansson & Lindqvist, 1978), $Na_2TeO_3.5H_2O$ (Philippot *et al.*, 1979) et BaTeO_3.H_2O (Rottersten-Nielsen, Grönbæk-Hazell & Rasmussen, 1971) dont les structures contiennent également des anions TeO_3^{2-} discrets, la pyramide *E*TeO₃ étant très proche d'une symétrie $C_{3\nu}$. Les dimensions des anions TeO_3^{2-} dans ces différentes phases sont indiquées dans le Tableau 5.

On peut rapprocher en particulier la structure de NaKTeO₃.3H₂O avec celle du tellurite de potassium

Tableau 4. Distances inférieures à 4 Å et angles (°) caractéristiques de l'environnement de l'atome de tellure(IV) par les atomes d'oxygène

$\begin{array}{l} Te-O(1^{l}) \\ Te-O(1^{li}) & 1,831 \ (10) \\ Te-O(1^{lil}) \end{array}$	$Te-O(2) \times 3$ Te-O(2 ^{iv}) × 3	3,489 (15) 3,959 (15) (cote $z - \frac{1}{2}$)
$O(1^{i})$ -Te- $O(1^{ii})$ $O(1^{i})$ -Te- $O(1^{iii})$ $O(1^{ii})$ -Te- $O(1^{iii})$	101,5 (4)	

Code de symétrie: (i) x, -1 + y, z; (ii) 1 - y, 1 - (x - y), z; (iii) -1 + (y - x), -x, z; (iv) $-x, y - x, -\frac{1}{2} + z$.

Tal	oleau 5.	Distance	es (A)	et angles (°) co	aractéristiques
de	l'anion	TeO ₃ ^{2–}	dans	K ₂ TeO ₃ .3H ₂	D, Na_2TeO_3
$5H_2O et BaTeO_3 H_2O$					

K ₂ TeO ₃ .3H	l ₂ O		
TeO(1)	1,848 (8)	O(1)-Te-O(2)	97,7 (3)
Te-O(2)	1,852 (6) ×2	O(1)-Te-O(2)	97,7 (3)
		O(2)-Te- $O(2)$	102,4 (4)
$Na_2TeO_3.5$	H ₂ O		
Te-O(1)	1,858 (3)	O(1)-Te-O(2)	99,3 (1)
Te-O(2)	1,862 (3)	O(1)-Te-O(3)	99,5 (1)
Te-O(3)	1,850 (3)	O(2)-Te-O(3)	99,8 (1)
BaTeO ₃ .H ₂	0		
Te-O(1)	1,858 (6)	O(1)-Te-O(2)	98,8 (3)
Te-O(2)	1,859 (6)	O(1)-Te- $O(3)$	96,5 (3)
Te-O(3)	1,847 (7)	O(2)-Te-O(3)	102,7 (3)

cristallisant également avec trois molécules d'eau. Mais dans cette structure, construite à partir d'ions K⁺, TeO_3^{-} et de molécules d'eau, les deux atomes de potassium indépendants sont tous deux en coordination octaédrique par les atomes d'oxygène, les longueurs de liaison variant de 2,68 à 2,98 Å.

Pour passer à la structure de NaKTeO₃. $3H_2O$, il faut remplacer un atome de potassium par un atome de sodium, beaucoup plus petit ($r_{Na^+} = 1,01$ et $r_{K^+} = 1,38$ Å, en coordination octaédrique, Shannon, 1976). Les atomes de sodium se placent alors dans des sites octaédriques, alors que les atomes de potassium plus

volumineux sont entourés par neuf atomes d'oxygène. Alors que la phase K_2 TeO₃.3H₂O appartient au groupe d'espace *Pnma*, centrosymétrique, la structure de NaKTeO₃.3H₂O devient non centrosymétrique.

Références

BROWN, I. D. (1974). J. Solid State Chem. 11, 214-233.

- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104–109.
- DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A24, 390–399.
- International Tables for X-ray Crystallography (1962). Tome III. Birmingham: Kynoch Press.
- JOHANSSON, G. B. & LINDQVIST, O. (1978). Acta Cryst. B34, 2959–2962.
- PHILIPPOT, E. (1981). J. Solid State Chem. 38(1). Sous presse.
- PHILIPPOT, E., MAURIN, M. & MORET, J. (1979). Acta Cryst. B35, 1337–1340.
- ROTTERSTEN-NIELSEN, B., GRÖNBÆK-HAZELL, R. & RASMUSSEN, S. E. (1971). Acta Chem. Scand. 25, 3037–3042.

SHANNON, R. D. (1976). Acta Cryst. A 32, 751-767.

- SHUVALOV, L. A., IVANOV, N. R. & SITNIK, T. K. (1967). Sov. Phys. Crystallogr. 12, 315–318; Kristallografiya, 12, 366–369.
- SUSA, K. & STEINFINK, H. (1971). J. Solid State Chem. 3, 75–82.
- TRÖMEL, M. (1980). J. Solid State Chem. 35, 90–98.
- VIJAYAN, M. (1968). Acta Cryst. B24, 1237-1241.

Acta Cryst. (1982). B38, 706-710

Structure de l'Hexathiodiphosphate(IV) d'Argent

PAR PATRICK TOFFOLI, ANNICK MICHELET, PARVIZ KHODADAD ET NOËL RODIER

Laboratoire de Chimie Minérale, Faculté des Sciences Pharmaceutiques et Biologiques, rue Jean-Baptiste Clément, 92290 Châtenay-Malabry, France

(Reçu le 30 mars 1981, accepté le 17 septembre 1981)

Abstract

Ag₄P₂S₆ is monoclinic, space group $P2_1/b$, with a = 6.522 (4), b = 19.616 (8), c = 11.797 (6) Å, $\gamma = 93.58$ (2)°, Z = 6 and $D_x = 4.52$ Mg m⁻³. The structure was solved by direct methods and refined by full-matrix least squares. R = 0.047 and $R_w = 0.050$ for 1833 independent reflections. Each Ag atom is surrounded by four S atoms which constitute an irregular tetrahedron. The P₂S₆⁴⁻ groups form layers situated along planes z = 0 and $z = \frac{1}{2}$. The two P₂S₆⁴⁻ groups have approximate 3m symmetry. Interatomic distances and bond angles are in good agreement with previously published values.

Introduction

L'étude de la structure cristalline de l'hexathiodiphosphate(IV) d'argent s'inscrit dans un ensemble de recherches poursuivies par l'un d'entre nous sur les thiophosphates simples et condensés. La méthode de préparation, la symétrie du réseau, les paramètres cristallins et le spectre de Debye et Scherrer ont fait l'objet d'un précédent mémoire (Toffoli & Khodadad, 1980).

Le monocristal utilisé mesure approximativement 0,230 \times 0,090 \times 0,060 mm. Les intensités de 2364 réflexions indépendantes, obtenues avec le rayonnement Mo $K\bar{a}$ isolé par un monochromateur, ont été

0567-7408/82/030706-05\$01.00 © 1982 International Union of Crystallography